Darboux Integrability of a Cubic Differential System with One Invariant Straight Line and One Invariant Cubic [Articol]

dc.contributor.authorCozma, Dumitruro
dc.contributor.authorMatei, Angelaro
dc.date.accessioned2025-06-19T08:42:04Z
dc.date.issued2024
dc.description.abstractWe find conditions for a singular point O(0; 0) of a center or a focus type to be a center, in a cubic differential system with one invariant straight line and one invariant cubic. The presence of a center at O(0; 0) is proved by method of Darboux integrability.en
dc.identifier.citationCOZMA, Dumitru and Angela MATEI. Darboux Integrability of a Cubic Differential System with One Invariant Straight Line and One Invariant Cubic. In: International Conference dedicated to the 60th anniversary of the foundation of Vladimir Andrunachievici Institute of Mathematics and Computer Science, MSU, October 10-13 2024. Chisinau: [S. n.], 2024, pp. 167-170. ISBN 978-9975-68-515-3.en
dc.identifier.isbn978-9975-68-515-3
dc.identifier.urihttps://msuir.usm.md/handle/123456789/18236
dc.language.isoen
dc.subjectcubic differential systemen
dc.subjectinvariant algebraic curveen
dc.subjectDarboux integrabilityen
dc.titleDarboux Integrability of a Cubic Differential System with One Invariant Straight Line and One Invariant Cubic [Articol]en
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Cozma Dumitru_167-170.pdf
Size:
745.16 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections