Darboux Integrability of a Cubic Differential System with One Invariant Straight Line and One Invariant Cubic [Articol]
dc.contributor.author | Cozma, Dumitru | ro |
dc.contributor.author | Matei, Angela | ro |
dc.date.accessioned | 2025-06-19T08:42:04Z | |
dc.date.issued | 2024 | |
dc.description.abstract | We find conditions for a singular point O(0; 0) of a center or a focus type to be a center, in a cubic differential system with one invariant straight line and one invariant cubic. The presence of a center at O(0; 0) is proved by method of Darboux integrability. | en |
dc.identifier.citation | COZMA, Dumitru and Angela MATEI. Darboux Integrability of a Cubic Differential System with One Invariant Straight Line and One Invariant Cubic. In: International Conference dedicated to the 60th anniversary of the foundation of Vladimir Andrunachievici Institute of Mathematics and Computer Science, MSU, October 10-13 2024. Chisinau: [S. n.], 2024, pp. 167-170. ISBN 978-9975-68-515-3. | en |
dc.identifier.isbn | 978-9975-68-515-3 | |
dc.identifier.uri | https://msuir.usm.md/handle/123456789/18236 | |
dc.language.iso | en | |
dc.subject | cubic differential system | en |
dc.subject | invariant algebraic curve | en |
dc.subject | Darboux integrability | en |
dc.title | Darboux Integrability of a Cubic Differential System with One Invariant Straight Line and One Invariant Cubic [Articol] | en |
dc.type | Article |