LARGE-TIME BEHAVIOR OF THE DIFFERENCE OF SOLUTIONS OF TWO EVOLUTION EQUATION
dc.contributor.author | Perjan, Andrei | |
dc.contributor.author | Rusu, Galina | |
dc.date.accessioned | 2018-02-22T14:01:43Z | |
dc.date.available | 2018-02-22T14:01:43Z | |
dc.date.issued | 2017 | |
dc.description.abstract | In a real Hilbert space H we consider a linear self-adjoint positive definite operator A : V = D ( A ) ⊂ H → H and investigate the behavior of the difference u − v of solutions to the problems u ′′ ( t ) + u ′ ( t ) + Au ( t ) = f ( t ) , t > 0 , u (0) = u 0 , u ′ (0) = u 1 , v ′ ( t ) + Av ( t ) = f ( t ) , t > 0 , v (0) = u 0 , where u 0 , u 1 ∈ H, f : [0 , + ∞ ) → H. | en |
dc.identifier.citation | PERJAN, A., RUSU, G. Large-time behavior of the difference of so lutions of two evolution equation. In: The Fourth Conference of Mathematical Society of the Republic of Moldova dedicated to the centenary of V. Andrunachievici (1917-1997): Proceeding CMSM4, June28-July2, 2017. Ch.: CEP USM, 2017, pp. 317-320. ISBN 978-9975-71-915-5. | en |
dc.identifier.isbn | 978-9975-71-915-5 | |
dc.identifier.uri | https://msuir.usm.md/handle/123456789/1658 | |
dc.language.iso | en | en |
dc.publisher | CEP USM | en |
dc.subject | large-time behavior | en |
dc.subject | abstract second order differential equation | en |
dc.subject | abstract first order differential equation | en |
dc.subject | a priori estimate | en |
dc.title | LARGE-TIME BEHAVIOR OF THE DIFFERENCE OF SOLUTIONS OF TWO EVOLUTION EQUATION | en |
dc.type | Article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- 317_320_Large-time behavior of the difference of solutions of two evolution equation.pdf
- Size:
- 631.72 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: