2. Articole

Permanent URI for this collectionhttps://msuir.usm.md/handle/123456789/47

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Item
    LUMINESCENT PROPERTIES OF LOW-DIMENSIONAL ZnO:Ag POWDERS OBTAINED BY CHEMICAL DEPOSITION FROM AQUEOUS SOLUTION
    (2023) Goglidze, Tatiana; Goncearenco, Evghenii; Dementiev, Igor; Nedeoglo, Natalia; Iurieva, Tatiana; Nedeoglo, Dumitru
    Photoluminescence (PL) spectra of ZnO:Ag highly dispersed powders obtained by chemical deposition from aqueous solution are investigated in the wavelength range between 360 and 750 nm at room temperature under excitation between 250 and 350 nm. Before starting the synthesis, the Ag dopant was introduced into the initial solution in the form of AgNO3 silver nitrate in the amount of 12, 102, and 252 mg. The PL spectra consist of an ultraviolet emission (380 nm) attributed to AgZn acceptor-bound exciton, a short-wavelength violet emission (400 –450 nm) and a wide long-wavelength yellow-orange emission (560 – 600 nm). With decreasing excitation energy, the violet emission decreases in intensity, while the yellow-orange emission increases. This is caused by the phenomenon of self-absorption of the short-wavelength emission and energy transmission to the centers of the long-wavelength emission. A rapid decrease in intensity of all the PL bands is found for the sample with maximum Ag concentration. This fact is due to the appearance of the second phase in the form of silver oxide and, consequently, a decrease in the concentration of AgZn point defects responsible for the bands.
  • Thumbnail Image
    Item
    LUMINESCENT PROPERTIES ON ZnO:Cr NANOCRYSTALS AND THIN LAYERS
    (Springer Nature, 2020) Goglidze, Tatiana; Dementiev, Igor; Goncearenco, Evghenii; Iurieva, Tatiana; Nedeoglo, Dumitru; Nedeoglo, Natalia
    Both undoped and chromium doped zinc oxide nanocrystal powders are obtained by chemical deposition and hydrothermal methods. ZnO and ZnO:Cr thin layers on the surface of ZnSe and ZnSe:Cr samples, respectively, are obtained by isovalent substitution of selenium by oxygen in the process of thermal treatment of the samples in air. Photoluminescence spectra of the ZnO and ZnO:Cr nanopowders and thin layers obtained by various techniques are investigated at room temperature. Cr doped ZnO powders obtained by chemical deposition and hydrothermal methods improves the powder quality, as evidenced exciton emission is more intensive. New emission bands are found in visible (615 nm, 625 nm) and infrared (925 nm, ~2000 nm) spectral ranges for ZnO:Cr nanopowders and thin films. The contribution of Cr impurity to the formation of emission bands is discussed.
  • Thumbnail Image
    Item
    LUMINESCENT PROPERTIES OF Sb-DOPED ZnSe SINGLE CRYSTALS
    (2019) Sushkevich, Konstantin; Goncearenco, Evghenii; Nedeoglo, Natalia; Nedeoglo, Dmitrii
    Photoluminescence (PL) spectra of ZnSe:0.1at%Sb single crystals are studied between 90 and 300 K. The samples are grown by the chemical vapor transport (CVT) method with iodine as a transport agent and doped with Sb impurity during the growth. A yellow PL band with a maximum at 2.16 eV (575 nm) at room temperature is observed for the first time. A model of a (SbSeISe) acceptor center with the energy level located at 0.52 eV above the valence band edge is proposed, and the mechanism of the formation of this yellow PL band under direct and indirect excitation is discussed.
  • Thumbnail Image
    Item
    INFRARED PHOTOLUMINESCENCE OF ZnSe:GD CRYSTALS
    (Elsevier, 2015) Colibaba, Gleb; Goncearenco, Evghenii; Nedeoglo, Dmitrii; Nedeoglo, Natalia
    Photoluminescent and optical properties of ZnSe crystals doped with Gd impurity are investigated in infrared (IR) spectral range. The influence of crystal growth temperature, impurity concentration, stoichiometric deviation and post-annealing cooling rate, concentration of Cr and Cu background impurities, temperature and excitation level on photoluminescent and optical properties of the samples is studied. Based on these investigations, the structure of complex IR photoluminescence (PL) bands is analyzed. Correlation between the component parts of the bands at 1 and 2 µm is found and possibility to control the IR PL spectra by enrichment of the samples with Zn or Se is discussed. Coincidence of the IR PL spectra structure is shown for the samples doped with Gd, Yb, and Cr impurities. The model that explains the formation of complexes based on rare-earth elements (REEs) and Cr and Cu background impurities fixed in the nodes of crystal lattice with tetrahedral symmetry, responsible for IR PL bands, is proposed.
  • Thumbnail Image
    Item
    PHOTOLUMINESCENCE OF ZnSe SAMPLES DOPED WITH ANTIMONY AND IODINE
    (Elsevier, 2021) Sushkevich, Konstantin; Goncearenco, Evghenii; Nedeoglo, Natalia; Nedeoglo, Dmitrii
    Photoluminescence (PL) spectra of ZnSe samples grown by Chemical Vapour Transport (CVT), Physical Vapour Transport (PVT), and from melt have been studied in the temperature range from 100 to 300 K. Impurity-defect composition of the studied samples was varied by doping with antimony (Sb) or iodine (I), as well as co-doping with Sb and I, both during the crystal growth and crystal annealing in the respective melts. It is established that the PL band with maximum at (570–580) nm is present only in the spectra for ZnSe samples co-doped with Sb and I, independent of growth technique mand doping method. The (SbSe–ISe) radiative centre, with the energy level placed 0.5 eV above the valence band top, is proposed to be responsible for this PL band.
  • Thumbnail Image
    Item
    SHALLOW DONOR STATES INDUCED IN ZNSE:AU SINGLE CRYSTALS BY LATTICE DEFORMATION
    (American Institute of Physics, 2008) Nedeoglo, Natalia; Nedeoglo, Dmitrii; Laiho, R.; Sirkeli, Vadim; Lähderanta, E.
    Photoluminescence (PL) spectra are investigated in n-ZnSe single crystals at different temperatures from 4.4 to 300 K immediately after doping with Au from melt of Se+Au or Zn+Au and after storage of the doped samples for 4 years in the dark under normal room conditions. Due to the formation of Aui interstitial donors in the n-ZnSe:Se:Au crystals with time, the origin of the near band edge PL changes from acceptor-bound to donor-bound excitons. Taking into account the results of PL characterization, we proposed that the Aui donors are generated by displacement of Au ions from regular lattice sites to interstitial sites with the help of lattice deformation forces. Transport measurements show dramatic increase in the electrical conductivity and the free electron concentration after storage of the n-ZnSe:Zn:Au crystals, thus confirming the proposed model.
  • Thumbnail Image
    Item
    LUMINESCENT PROPERTIES OF ZnO POWDERS SYNTHESIZED BY THE ISOVALENT SUBSTITUTION METHOD
    (2016) Goglidze, Tatiana; Dementiev, Igor; Koval, Andrei; Nedeoglo, Natalia; Nedeoglo, Dmitrii
    Zinc oxide powders have been prepared by the isovalent substitution method by means of high - temperature annealing of a zinc sulfide powder synthesized by a chemical method. Investigation of photoluminescence (PL) spectra in dependence on annealing temperat ure varied from 870 to 1050  С has made it possible to find the temperature range of 920 – 950  С for the most active isovalent substitution of oxygen atoms for sulfur atoms and the formation of a ZnO  S phase. X - ray diffraction analysis has revealed that the p owder with crystal lattice parameters а о = 0.3249 nm and с о = 0.5206 nm and the ratio of с о / а о = 1.60, which are characteristic of zinc oxide crystals, is synthesized at the maximum annealing temperature. It has been found that the maximum of a structurel ess PL band in the spectrum for the ZnO powder at room temperature is localized at 500 nm. It has been supposed that the band is caused by ―free electron – acceptor‖ radiative transitions, where the acceptor level is 0.95 eV above the valence band edge.