2. Articole
Permanent URI for this collectionhttps://msuir.usm.md/handle/123456789/47
Browse
3 results
Search Results
Item THE STRUCTURE OF HIGH-TEMPERATURE BLUE LUMINESCENCE CENTERS IN ZINC SELENIDE AND MECHANISMS OF THIS LUMINESCENCE(Springer Nature, 1998) Ivanova, G.N.; Kasiyan, V.A.; Nedeoglo, Dmitrii; Nedeoglo, Natalia; Simashkevich, A.V.The characteristic features of temperature quenching of the intensity of the edge luminescence bands of n-ZnSe crystals annealed in different media (vacuum, Zn, Se) are investigated a wide temperature range. A change in the mechanisms of high-temperature exciton luminescence in the short-wavelength region of the spectrum (443 nm) with increase in temperature of the crystal is observed. It is shown that the nature of temperature quenching of the long-wavelength edge luminescence band (458 nm) is evidence of dissociation of associative luminescence centers with increase in the sample temperature.Item MAGNETIC AND LUMINESCENT PROPERTIES OF NICKEL-DOPED ZnSe CRYSTALS(Elsevier, 2015) Sirkeli, Vadim; Radevici, Ivan; Sushkevich, Konstantin; Nedeoglo, Natalia; Nedeoglo, DmitriiMagnetic and photoluminescent properties of nickel-doped ZnSe crystals with impurity concentrations varied by changing the Ni amount in the source material from 0.001 to 0.50 at.% are studied in 5–300 K temperature range. Investigation of magnetic properties shows that Ni impurity in ZnSe forms isolated paramagnetic centers and probability of Ni–Ni pairs formation is negligible due to low Ni concentration in the samples. The contribution of Ni impurity to edge emission and its influence on infra-red emission are discussed. It is found that complete concentration quenching of luminescence within all studied spectral range is observed starting with Ni concentration of 0.50 at.%.Item MAGNETIC AND LUMINESCENT PROPERTIES OF IRON-DOPED ZnSe CRYSTALS(Elsevier, 2010) Kulyuk, Leonid; Nedeoglo, Dmitrii; Nedeoglo, Natalia; Radevici, Ivan; Sirkeli, Vadim; Sushkevich, KonstantinMagnetic and luminescent properties of ZnSe crystals doped with Fe by various methods are studied. It is established that Fe impurity is responsible for photoluminescence (PL) bands at 980, 1320, 1450 nm and quenches PL band at 630–645 nm. It is found that magnetic properties of ZnSe:Fe crystals are sensitive to the doping method. At low fields, two magnetic subsystems may be observed for the samples doped with Fe during the growth process—weak paramagnetic subsystem and antiferromagnetic subsystem with TС=–130 K. For the samples doped with Fe by high-temperature annealing in Zn melt, few magnetic subsystems may be distinguished, however, the magnetic properties are typical for spin glasses with the transition temperature Tsg=(45–50) K.