2. Articole

Permanent URI for this collectionhttps://msuir.usm.md/handle/123456789/47

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    In2O3- and SnO2-based ozone sensors: Design and characterization [Articol]
    (Taylor & Francis Ltd, 2018) Korotcenkov, Ghenadii; Brinzari, Vladimir; Cho, B.K.
    This article describes in detail the SnO2 and In2O3 metal oxides as materials for designing solid state conductometric ozone sensors. The main focus of this article is on the description of the SnO2 and In2O3 films' structural parameters important for gas sensor design and on the establishment of the main regularities of the film parameters influence on the sensor characteristics. Advantages and disadvantages of approaches used for optimization of ozone sensor parameters are also analyzed. In particular, surface modification, bulk doping of SnO2 and In2O3, and the use of 1D structures and hybrid materials are considered. The main factors, controlling parameters of SnO2- and In2O3-based ozone sensors, are determined, and recommendations for the process of the SnO2 and In2O3 films deposition, facilitating the search of the film parameters and the fabrication technologies that optimize the ozone sensor performance, are formulated.
  • Thumbnail Image
    Item
    Kinetic approach to receptor function in chemiresistive gas sensor modeling of tin dioxide. Steady state consideration [Articol]
    (Elsevier, 2018) Brinzari, Vladimir; Korotcenkov, Ghenadii
    Kinetic approach in phenomenological modeling of SnO2 chemiresistive gas sensor is proposed. It is based on a new perception of chemisorbed oxygen forms and consistent account of main reaction rates into a balance equation of particles on (110) surface. So-called receptor function was considered for dry and humid atmosphere and in the presence of CO. Transducer function was calculated within an electron filtering model. Numerical simulation of the surface coverage by oxygen and major gas sensing characteristics of SnO2 within 150–600 °C temperature range showed sufficient agreement with experimental behavior of nanocrystalline SnO2-based sensors. Model allows interpretation of some of the important features in these characteristics.