MAXIMUM NONTRIVIAL CONVEX COVER NUMBER OF JOIN AND CORONA OF GRAPHS
dc.contributor.author | Buzatu, Radu | |
dc.date.accessioned | 2023-07-07T09:53:55Z | |
dc.date.available | 2023-07-07T09:53:55Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Let G be a connected graph. We say that a set S ⊆ X(G) is convex in G if, for any two vertices x, y ∈ S, all vertices of every shortest path between x and y are in S. If 3 ≤ |S| ≤ |X(G)| − 1, then S is a nontrivial set. The greatest p ≥ 2 for which there is a cover of G by p nontrivial and convex sets is the maximum nontrivial convex cover number of G. In this paper, we determine the maximum nontrivial convex cover number of join and corona of graphs. | en |
dc.identifier.citation | BUZATU, Radu. Maximum nontrivial convex cover number of join and corona of graphs. În: Buletinul Academiei de Științe a Moldovei. Matematica. 2021, nr.1-2(95-96), pp. 93-98. ISSN 1024-7696 | en |
dc.identifier.issn | 1024-7696 | |
dc.identifier.uri | https://msuir.usm.md/handle/123456789/10867 | |
dc.language.iso | en | en |
dc.subject | convex cover | en |
dc.subject | join of graphs | en |
dc.subject | corona of graphs | en |
dc.title | MAXIMUM NONTRIVIAL CONVEX COVER NUMBER OF JOIN AND CORONA OF GRAPHS | en |
dc.type | Article | en |