LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS AND NONAUTONOMOUS DYNAMICAL SYSTEMS
dc.contributor.author | Ceban, David | |
dc.date.accessioned | 2018-02-22T13:23:51Z | |
dc.date.available | 2018-02-22T13:23:51Z | |
dc.date.issued | 2017 | |
dc.description.abstract | We prove that the linear stochastic equation dx(t) = (Ax(t)+f(t))dt+g(t)dW(t) (*) with linear operator A generating a C0-semigroup{U(t)}t≥0 and Levitan almost periodic forcing termsf and g admits a unique Levitan almost periodic [3,ChIV] solution in distrution sense if it has at least one precompact solution on R+and the semigroup{U(t)}t≥0is asymptotically stable. | en |
dc.identifier.citation | CEBAN, D. Linear Stochastic Differential Equations and Nonautonomous Dynamical Systems. In: The Fourth Conference of Mathematical Society of the Republic of Moldova dedicated to the centenary of V. Andrunachievici (1917-1997): Proceeding CMSM4, June28-July2, 2017. Ch.: CEP USM, 2017, pp. 255-258. ISBN 978-9975-71-915-5. | en |
dc.identifier.isbn | 978-9975-71-915-5 | |
dc.identifier.uri | https://msuir.usm.md/handle/123456789/1651 | |
dc.language.iso | en | en |
dc.publisher | CEP USM | en |
dc.subject | Levitan almost periodic solutions | en |
dc.subject | linear stochastic differential equations | en |
dc.title | LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS AND NONAUTONOMOUS DYNAMICAL SYSTEMS | en |
dc.type | Article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- 255_258_Linear Stochastic Differential Equations and Nonautonomous Dynamical Systems.pdf
- Size:
- 633.68 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: