LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS AND NONAUTONOMOUS DYNAMICAL SYSTEMS

dc.contributor.authorCeban, David
dc.date.accessioned2018-02-22T13:23:51Z
dc.date.available2018-02-22T13:23:51Z
dc.date.issued2017
dc.description.abstractWe prove that the linear stochastic equation dx(t) = (Ax(t)+f(t))dt+g(t)dW(t) (*) with linear operator A generating a C0-semigroup{U(t)}t≥0 and Levitan almost periodic forcing termsf and g admits a unique Levitan almost periodic [3,ChIV] solution in distrution sense if it has at least one precompact solution on R+and the semigroup{U(t)}t≥0is asymptotically stable.en
dc.identifier.citationCEBAN, D. Linear Stochastic Differential Equations and Nonautonomous Dynamical Systems. In: The Fourth Conference of Mathematical Society of the Republic of Moldova dedicated to the centenary of V. Andrunachievici (1917-1997): Proceeding CMSM4, June28-July2, 2017. Ch.: CEP USM, 2017, pp. 255-258. ISBN 978-9975-71-915-5.en
dc.identifier.isbn978-9975-71-915-5
dc.identifier.urihttps://msuir.usm.md/handle/123456789/1651
dc.language.isoenen
dc.publisherCEP USMen
dc.subjectLevitan almost periodic solutionsen
dc.subjectlinear stochastic differential equationsen
dc.titleLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS AND NONAUTONOMOUS DYNAMICAL SYSTEMSen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
255_258_Linear Stochastic Differential Equations and Nonautonomous Dynamical Systems.pdf
Size:
633.68 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections