CONVERGENCE ESTIMATES FOR SOME ABSTRACT SECOND ORDER DIFFERENTIAL EQUATIONS IN HILBERT SPACES

dc.contributor.authorPerjan, Andrei
dc.contributor.authorRusu, Galina
dc.date.accessioned2023-03-13T14:26:58Z
dc.date.available2023-03-13T14:26:58Z
dc.date.issued2019-09-28
dc.description.abstractn a real Hilbert space H we consider the following perturbed Cauchy problem ( " u′′ " (t) + u′ " (t) + Au " (t) + B(u " (t)) = f(t), t ∈ (0, T ), u " (0) = u0, u′ " (0) = u1, (P " ) where u0, u1 ∈ H, f : [0, T ] 7→ H and ", are two small parameters, A is a linear self-adjoint operator, B is a locally Lipschitz and monotone operator. We study the behavior of solutions u " to the problem (P " ) in two different cases: (i) when " → 0 and ≥ 0 > 0; (ii) when " → 0 and → 0. We establish that the solution to the unperturbed problem has a singular behavior, relative to the parameters, in the neighborhood of t = 0. We show the boundary layer and boundary layer function in both cases.en
dc.identifier.citationPERJAN, Andrei; RUSU, Galina. Convergence estimates for some abstract second order differential equations in Hilbert spaces. In: Proceedings IMCS-55The Fifth Conference of Mathematical Society of the Republic of Moldova. 28 septembrie - 1 octombrie 2019, Chișinău. Chișinău, Republica Moldova: Tipografia Valinex, 2019, pp. 130-133. ISBN 978-9975-68-378-4.en
dc.identifier.isbn978-9975-68-378-4
dc.identifier.urihttps://msuir.usm.md/handle/123456789/9029
dc.language.isoenen
dc.publisher"VALINEX"en
dc.subjectsingular perturbationen
dc.subjectboundary layer functionen
dc.titleCONVERGENCE ESTIMATES FOR SOME ABSTRACT SECOND ORDER DIFFERENTIAL EQUATIONS IN HILBERT SPACESen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
130-133_12.pdf
Size:
580.73 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections