MIDDLE BRUCK LOOPS AND THE TOTAL MULTIPLICATION GROUP
dc.contributor.author | Drapal, Ales | |
dc.contributor.author | Syrbu, Parascovia | |
dc.date.accessioned | 2023-10-04T07:51:21Z | |
dc.date.available | 2023-10-04T07:51:21Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Let Q be a loop. The mappings x↦ ax, x↦ xa and x↦ a/ x are denoted by La, Ra and Da, respectively. The loop is said to be middle Bruck if for all a, b∈ Q there exists c∈ Q such that DaDbDa= Dc. The right inverse of Q is the loop with operation x/ (y\ 1). It is proved that Q is middle Bruck if and only if the right inverse of Q is left Bruck (i.e., a left Bol loop in which (xy) - 1= x- 1y- 1). Middle Bruck loops are characterized in group theoretic language as transversals T to H≤ G such that ⟨ T⟩ = G, TG= T and t2= 1 for each t∈ T. Other results include the fact that if Q is a finite loop, then the total multiplication group⟨ La, Ra, Da; a∈ Q⟩ is nilpotent if and only if Q is a centrally nilpotent 2-loop, and the fact that total multiplication groups of paratopic loops are isomorphic. | en |
dc.identifier.citation | DRAPAL, Ales, SYRBU, Parascovia. Middle Bruck Loops and the Total Multiplication Group. In: Results in Mathematics, 2022, nr. 4(77), p. 0. ISSN 1422-6383. DOI: 10.1007/s00025-022-01716-2 | en |
dc.identifier.issn | 1422-6383 | |
dc.identifier.uri | https://doi.org/10.1007/s00025-022-01716-2 | |
dc.identifier.uri | https://msuir.usm.md/handle/123456789/11112 | |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.subject | Bruck loop | en |
dc.subject | middle Bol loop | en |
dc.subject | paratopy | en |
dc.subject | total multiplication group | en |
dc.title | MIDDLE BRUCK LOOPS AND THE TOTAL MULTIPLICATION GROUP | en |
dc.type | Article | en |