MIDDLE BRUCK LOOPS AND THE TOTAL MULTIPLICATION GROUP

dc.contributor.authorDrapal, Ales
dc.contributor.authorSyrbu, Parascovia
dc.date.accessioned2023-10-04T07:51:21Z
dc.date.available2023-10-04T07:51:21Z
dc.date.issued2022
dc.description.abstractLet Q be a loop. The mappings x↦ ax, x↦ xa and x↦ a/ x are denoted by La, Ra and Da, respectively. The loop is said to be middle Bruck if for all a, b∈ Q there exists c∈ Q such that DaDbDa= Dc. The right inverse of Q is the loop with operation x/ (y\ 1). It is proved that Q is middle Bruck if and only if the right inverse of Q is left Bruck (i.e., a left Bol loop in which (xy) - 1= x- 1y- 1). Middle Bruck loops are characterized in group theoretic language as transversals T to H≤ G such that ⟨ T⟩ = G, TG= T and t2= 1 for each t∈ T. Other results include the fact that if Q is a finite loop, then the total multiplication group⟨ La, Ra, Da; a∈ Q⟩ is nilpotent if and only if Q is a centrally nilpotent 2-loop, and the fact that total multiplication groups of paratopic loops are isomorphic.en
dc.identifier.citationDRAPAL, Ales, SYRBU, Parascovia. Middle Bruck Loops and the Total Multiplication Group. In: Results in Mathematics, 2022, nr. 4(77), p. 0. ISSN 1422-6383. DOI: 10.1007/s00025-022-01716-2en
dc.identifier.issn1422-6383
dc.identifier.urihttps://doi.org/10.1007/s00025-022-01716-2
dc.identifier.urihttps://msuir.usm.md/handle/123456789/11112
dc.language.isoenen
dc.publisherSpringeren
dc.subjectBruck loopen
dc.subjectmiddle Bol loopen
dc.subjectparatopyen
dc.subjecttotal multiplication groupen
dc.titleMIDDLE BRUCK LOOPS AND THE TOTAL MULTIPLICATION GROUPen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
DRAPAL.pdf
Size:
357.07 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections