LIMITS OF SOLUTIONS TO THE SEMILINEAR PLATE EQUATION WITH SMALL PARAMETER

dc.contributor.authorPerjan, Andrei
dc.contributor.authorRusu, Galina
dc.date.accessioned2023-07-07T11:02:11Z
dc.date.available2023-07-07T11:02:11Z
dc.date.issued2022
dc.description.abstractWe study the existence of the limits of solutions to the semilinear plate equation with boundary Dirichlet condition with a small parameter coefficient of the second order derivative in time. We establish the convergence of solutions to the perturbed problem and their derivatives in spacial variables to the corresponding solutions to the unperturbed problem as the small parameter tends to zero.en
dc.identifier.citationPERJAN, Andrei, RUSU, Galina. Limits of solutions to the semilinear plate equation with small parameter. În: Buletinul Academiei de Științe a Moldovei. Matematica. 2022, nr.2(99), pp. 76-102. ISSN 1024-7696en
dc.identifier.issn1024-7696
dc.identifier.urihttps://msuir.usm.md/handle/123456789/10876
dc.identifier.urihttps://doi.org/10.56415/basm.y2022.i2.p76
dc.language.isoenen
dc.subjecta priory estimateen
dc.subjectboundary layeren
dc.subjectsemilinear plate equationen
dc.subjectsingular perturbationen
dc.titleLIMITS OF SOLUTIONS TO THE SEMILINEAR PLATE EQUATION WITH SMALL PARAMETERen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
y2022-n2-(pp76-102).pdf
Size:
232.74 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections