LIMITS OF SOLUTIONS TO THE SEMILINEAR WAVE EQUATION WITH SMALL PARAMETER

dc.contributor.authorPerjan, Andrei
dc.date.accessioned2023-03-13T11:41:46Z
dc.date.available2023-03-13T11:41:46Z
dc.date.issued2006
dc.description.abstractWe study the existence of the limits of solution to singularly perturbed initial boundary value problem of hyperbolic - parabolic type with boundary Dirichlet condition for the semilinear wave equation. We prove the convergence of solutions and also the convergence of gradients of solutions to perturbed problem to the corresponding solutions to the unperturbed problem as the small parameter tends to zero. We show that the derivatives of solution relative to time-variable possess the boundary layer function of the exponential type in the neighborhood of t = 0en
dc.identifier.citationPERJAN, Andrei. Limits of solutions to the semilinear wave equation with small parameter. In: Buletinul Academiei de Ştiinţe a Moldovei. Matematica. 2006, nr. 1(50), pp. 65-84. ISSN 1024-7696.en
dc.identifier.issn1024-7696
dc.identifier.urihttps://msuir.usm.md/handle/123456789/9022
dc.language.isoenen
dc.publisherAcademia de Ştiinţe a Moldoveien
dc.subjectsemiliniar wave equationen
dc.subjectsingular perturbationen
dc.subjectboundary layer functionen
dc.titleLIMITS OF SOLUTIONS TO THE SEMILINEAR WAVE EQUATION WITH SMALL PARAMETERen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
65-84_Limits of solutions to the semilinear wave equation with small parameter.pdf
Size:
195.17 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections