LIMITS OF SOLUTIONS TO THE SEMILINEAR WAVE EQUATION WITH SMALL PARAMETER
dc.contributor.author | Perjan, Andrei | |
dc.date.accessioned | 2023-03-13T11:41:46Z | |
dc.date.available | 2023-03-13T11:41:46Z | |
dc.date.issued | 2006 | |
dc.description.abstract | We study the existence of the limits of solution to singularly perturbed initial boundary value problem of hyperbolic - parabolic type with boundary Dirichlet condition for the semilinear wave equation. We prove the convergence of solutions and also the convergence of gradients of solutions to perturbed problem to the corresponding solutions to the unperturbed problem as the small parameter tends to zero. We show that the derivatives of solution relative to time-variable possess the boundary layer function of the exponential type in the neighborhood of t = 0 | en |
dc.identifier.citation | PERJAN, Andrei. Limits of solutions to the semilinear wave equation with small parameter. In: Buletinul Academiei de Ştiinţe a Moldovei. Matematica. 2006, nr. 1(50), pp. 65-84. ISSN 1024-7696. | en |
dc.identifier.issn | 1024-7696 | |
dc.identifier.uri | https://msuir.usm.md/handle/123456789/9022 | |
dc.language.iso | en | en |
dc.publisher | Academia de Ştiinţe a Moldovei | en |
dc.subject | semiliniar wave equation | en |
dc.subject | singular perturbation | en |
dc.subject | boundary layer function | en |
dc.title | LIMITS OF SOLUTIONS TO THE SEMILINEAR WAVE EQUATION WITH SMALL PARAMETER | en |
dc.type | Article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- 65-84_Limits of solutions to the semilinear wave equation with small parameter.pdf
- Size:
- 195.17 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: