Sensitivity analysis of the equilibrium states of multi-dimensional dynamical systems for ordinary and bifurcation parameter values [Articol]

dc.contributor.authorBarsuk, Alexandr A.
dc.contributor.authorPaladi, Florentin
dc.date.accessioned2023-01-26T09:31:45Z
dc.date.available2023-01-26T09:31:45Z
dc.date.issued2022
dc.description.abstractDependences of the equilibrium states of multidimensional dynamical systems on the parameters of the dynamical system in a small neighborhood of their equilibrium values are investigated. Cases of ordinary and bifurcation values of parameters are considered. Asymptotic representations are derived for sensitivity formulae of the equilibrium values of parameters. Stability analysis of the equilibrium states for nonlinear complex systems described by the Landau-type kinetic potential with two order parameters and the Lotka–Volterra model is conducted. Two different rate processes as combinations of in series and in parallel pathways are examined.en
dc.identifier.citationBARSUK, Alexandr A.; PALADI, Florentin. Sensitivity analysis of the equilibrium states of multi-dimensional dynamical systems for ordinary and bifurcation parameter values. In: European Physical Journal B. 2022, nr. 3(95), p. 0. ISSN 1434-6028.en
dc.identifier.issn1434-6028
dc.identifier.urihttps://link.springer.com/article/10.1140/epjb/s10051-022-00276-2
dc.identifier.urihttps://msuir.usm.md/handle/123456789/8522
dc.language.isoenen
dc.publisherSpringeren
dc.subjectasymptotic representationsen
dc.subjectbifurcation parameteren
dc.subjectequilibrium stateen
dc.titleSensitivity analysis of the equilibrium states of multi-dimensional dynamical systems for ordinary and bifurcation parameter values [Articol]en
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
BARSUK 1.pdf
Size:
247.43 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections