COMMUTANTS OF MIDDLE BOL LOOPS

dc.contributor.authorGrecu, Ion
dc.contributor.authorSyrbu, Parascovia
dc.date.accessioned2016-04-01T11:03:10Z
dc.date.available2016-04-01T11:03:10Z
dc.date.issued2014
dc.description.abstractThe commutant of a loop is the set of all its elements that commute with each element of the loop. It is known that the commutant of a left or right Bol loop is not a subloop in general. Below we prove that the commutant of a middle Bol loop is an AIP-subloop, i.e., a subloop for which the inversion is an automorphism. A necessary and su cient condition when the commutant is invariant under the existing isostrophy between middle Bol loops and the corresponding right Bol loops is given.en
dc.identifier.citationGRECU, I., SYRBU, P. Commutants of middle bol loops.In: Quasigroups and Related Systems. 2014, nr. 1(22), pp. 81-88en
dc.identifier.issn1561-2848
dc.identifier.urihttps://msuir.usm.md/handle/123456789/581
dc.language.isoenen
dc.publisherAcademy of Sciences of Moldovaen
dc.subjectright Bol loopen
dc.titleCOMMUTANTS OF MIDDLE BOL LOOPSen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Commutants of middle Bol loops.pdf
Size:
190.93 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections