COMMUTANTS OF MIDDLE BOL LOOPS
dc.contributor.author | Grecu, Ion | |
dc.contributor.author | Syrbu, Parascovia | |
dc.date.accessioned | 2016-04-01T11:03:10Z | |
dc.date.available | 2016-04-01T11:03:10Z | |
dc.date.issued | 2014 | |
dc.description.abstract | The commutant of a loop is the set of all its elements that commute with each element of the loop. It is known that the commutant of a left or right Bol loop is not a subloop in general. Below we prove that the commutant of a middle Bol loop is an AIP-subloop, i.e., a subloop for which the inversion is an automorphism. A necessary and su cient condition when the commutant is invariant under the existing isostrophy between middle Bol loops and the corresponding right Bol loops is given. | en |
dc.identifier.citation | GRECU, I., SYRBU, P. Commutants of middle bol loops.In: Quasigroups and Related Systems. 2014, nr. 1(22), pp. 81-88 | en |
dc.identifier.issn | 1561-2848 | |
dc.identifier.uri | https://msuir.usm.md/handle/123456789/581 | |
dc.language.iso | en | en |
dc.publisher | Academy of Sciences of Moldova | en |
dc.subject | right Bol loop | en |
dc.title | COMMUTANTS OF MIDDLE BOL LOOPS | en |
dc.type | Article | en |