Facultatea de Fizică şi Inginerie / Faculty of Physics and Engineering

Permanent URI for this communityhttps://msuir.usm.md/handle/123456789/7

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Structural and optical properties of ZnO:Ga thin films deposited on ito/glass substrates for optoelectronic applications [Articol]
    (Academia de Ştiinţe a Moldovei, 2021) Rusnac, Dumitru; Lungu, Ion; Colibaba, Gleb; Potlog, Tamara
    Doped (with GaCl3), undoped ZnO and ITO/ZnO:Ga nanostructured thin films are synthesized using the spray pyrolysis method. The doped ZnO thin films are synthesized at the atomic ratio of Ga/Zn added in the starting solution fixed at 1, 2, 3, and 5. Gallium-doped ZnO films synthesized on glass/ITO substrates are annealed at 4500C in different environments: vacuum, oxygen, and hydrogen. X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and current–voltage (I–V) measurements are applied to characterize the structural properties, composition, surface morphology, and electrical properties of ZnO:Ga nanostructured thin films. X-ray diffraction analysis shows that ZnO:Ga films deposited on glass substrates have a dense and homogeneous surface with a hexagonal structure. The ZnO:Ga films deposited on glass/ITO substrates are composed of two phases, namely, hexagonal ZnO and cubic ITO. The I–V characteristics show the presence of good ohmic contacts between Al and In metals and ZnO:Ga thin films regardless of the nature of the substrate and the annealing atmosphere.
  • Thumbnail Image
    Item
    Recent advances in Terahertz technology for security and biomedical applications [Articol]
    (Universitatea de Stat din Tiraspol, 2021) Sirkeli, Vadim
    Terahertz waves have low photon energies (~ 4.1 meV for 1 THz), which is about 1 million times weaker than the energy of X-ray photons. They do not cause any harmful ionization in biological tissues. The terahertz radiation is strongly attenuated by water and is very sensitive to water content. This paper provides current status and recent advances in terahertz technology for security and medical applications. In particular, we report on our designs of THz quantum cascade lasers to identify cancerous tissues and other medical issues.