The article is devoted to the study of non-autonomous Navier–Stokes equations. First, the authors have proved that such systems admit compact global attractors. This problem is formulated and solved in the terms of general non-autonomous dynamical systems. Second, they have obtained conditions of convergence of non-autonomous Navier–Stokes equations. Third, a criterion for the existence of almost periodic (quasi periodic, almost automorphic, recurrent, pseudo recurrent) solutions of non-autonomous Navier–Stokes equations is given. Finally, the authors have derived a global averaging principle for non-autonomous Navier–Stokes equations.