Browsing by Author "Drapal, Ales"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item MIDDLE BRUCK LOOPS AND THE TOTAL MULTIPLICATION GROUP(Springer, 2022) Drapal, Ales; Syrbu, ParascoviaLet Q be a loop. The mappings x↦ ax, x↦ xa and x↦ a/ x are denoted by La, Ra and Da, respectively. The loop is said to be middle Bruck if for all a, b∈ Q there exists c∈ Q such that DaDbDa= Dc. The right inverse of Q is the loop with operation x/ (y\ 1). It is proved that Q is middle Bruck if and only if the right inverse of Q is left Bruck (i.e., a left Bol loop in which (xy) - 1= x- 1y- 1). Middle Bruck loops are characterized in group theoretic language as transversals T to H≤ G such that ⟨ T⟩ = G, TG= T and t2= 1 for each t∈ T. Other results include the fact that if Q is a finite loop, then the total multiplication group⟨ La, Ra, Da; a∈ Q⟩ is nilpotent if and only if Q is a centrally nilpotent 2-loop, and the fact that total multiplication groups of paratopic loops are isomorphic.