Browsing by Author "Adelung, Rainer"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item AERO-Ga2O3 NANOMATERIAL ELECTROMAGNETICALLY TRANSPARENT FROM MICROWAVES TO TERAHERTZ FOR INTERNET OF THINGS APPLICATIONS(2020) Braniște, Tudor; Dragoman, Mircea; Jucov, Serghei; Aldrigo, Martino; Ciobanu, Vladimir; Iordănescu, Sergiu; Alîabîeva, Liudmila; Fumagalli, Francesco; Ceccone, Giacomo; Raevschi, Simion; Schűtt, Fabian; Adelung, Rainer; Colpo, Pascal; Gorșunov, Boris; Tighineanu, IonIn this paper, fabrication of a new material is reported, the so-called Aero-Ga2O3 or Aerogallox, which represents an ultra-porous and ultra-lightweight three-dimensional architecture made from interconnected microtubes of gallium oxide with nanometer thin walls. The material is fabricated using epitaxial growth of an ultrathin layer of gallium nitride on zinc oxide microtetrapods fabricated using epitaxial growth of an ultrathin layer of gallium nitride on zinc oxide microtetrapods followed by decomposition of sacrificial ZnO and oxidation of GaN which according to the results of X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS) characterizations, is transformed gradually in β-Ga2O3 with almost stoichiometric composition. The investigations show that the developed ultra-porous Aerogallox exhibits extremely low reflectivity and high transmissivity in an ultrabroadband electromagnetic spectrum ranging from X-band (8–12 GHz) to several terahertz which opens possibilities for quite new applications of gallium oxide, previously not anticipated.Item AERO-ZNS ARCHITECTURES WITH DUAL HYDROPHILIC–HYDROPHOBIC PROPERTIES FOR MICROFLUIDIC APPLICATIONS(2020) Pleșco, Irina; Braniște, Tudor; Wolff, Niklas; Gorceac, Leonid; Duppel, Viola; Cinic, Boris; Mishra, Yogendra Kumar; Sarua, Andrei; Adelung, Rainer; Kienle, Lorenz; Tighineanu, IonHere, we report on a new aero-material, called aero-ZnS, representing self-organized architectures made of ZnS hollow micro-tetrapod struc- tures with nanoscale thin walls. The fabrication process is based on the hydride vapor phase epitaxy of CdS on sacrificial micro-tetrapods of ZnO with simultaneous or subsequent transformation of CdS into ZnS and removal of the sacrificial ZnO crystals. The nanostructure of the obtained ZnS hollow micro-tetrapods exhibits the polytypic intergrowth of wurtzite- and sphalerite-type phases perpendicular to their close packed planes. The inner surface of the micro-tetrapod walls preserves oxygen sites, as demonstrated by imaging based on electron energy- loss filtering. The self-organized aero-ZnS architecture proves to be hydrophilic under tension and hydrophobic when compressed against water. Self-propelled liquid marbles assembled using ZnS hollow micro-tetrapod structures are demonstrated.Item COMPOSITION AND SURFACE OPTICAL PROPERTIES OF GASE:EU CRYSTALS BEFORE AND AFTER HEAT TREATMENT(2024) Sprincean, Veaceslav; Haoyi, Qiu; Tjardts, Tim; Lupan, Oleg; Untila, Dumitru; Aktas, Oral Cenk; Adelung, Rainer; Leontie, Liviu; Cârlescu, Aurelian; Gurlui, Silviu; Caraman, MihailThis work studies the technological preparation conditions, morphology, structural char- acteristics and elemental composition, and optical and photoluminescent properties of GaSe single crystals and Eu-doped β–Ga2O3 nanoformations on ε–GaSe:Eu single crystal substrate, obtained by heat treatment at 750–900 ◦C, with a duration from 30 min to 12 h, in water vapor-enriched atmosphere, of GaSe plates doped with 0.02–3.00 at. % Eu. The defects on the (0001) surface of GaSe:Eu plates serve as nucleation centers of β–Ga2O3:Eu crystallites. For 0.02 at. % Eu doping, the fundamental absorption edge of GaSe:Eu crystals at room temperature is formed by n = 1 direct excitons, while at 3.00 at. % doping, Eu completely shields the electron–hole bonds. The band gap of nanostructured β–Ga2O3:Eu layer, determined from diffuse reflectance spectra, depends on the dopant concentration and ranges from 4.64 eV to 4.87 eV, for 3.00 and 0.05 at. % doping, respectively. At 0.02 at. % doping level, the PL spectrum of ε–GaSe:Eu single crystals consists of the n = 1 exciton band, together with the impurity band with a maximum intensity at 800 nm. Fabry–Perrot cavities with a width of 9.3 μm are formed in these single crystals, which determine the interference structure of the impurity PL band. At 1.00–3.00 at. % Eu concentrations, the PL spectra of GaSe:Eu single crystals and β–Ga2O3:Eu nanowire/nanolamellae layers are determined by electronic transitions of Eu2+ and Eu3+ ions.Item ELECTROMAGNETIC INTERFERENCE SHIELDING IN X-BAND WITH AERO-GaN(IOP Publishing Ltd, 2019) Raevschi, Simion; Dragoman, Mircea; Braniste, Tudor; Iordanescu, Sergiu; Aldrigo, Martino; Shree, Sindu; Adelung, Rainer; Tiginyanu, IonWe investigate the electromagnetic shielding properties of an ultra-porous lightweight nanomaterial named aerogalnite (aero-GaN). Aero-GaN is made up of randomly arranged hollow GaN microtetrapods, which are obtained by direct growth using hydride vapor phase epitaxy of GaN on the sacrificial network of ZnO microtetrapods. A 2 mm thick aero-GaN sample exhibits electromagnetic shielding properties in the X-band similar to solid structures based on metal foams or carbon nanomaterials. Aero-GaN has a weight four to five orders of magnitude lower than the weight of metals.Item SELF-PROPELLED AERO-GaN BASED LIQUID MARBLES EXHIBITING PULSED ROTATION ON THE WATER SURFACE(2021) Braniște, Tudor; Ciobanu, Vladimir; Schűtt, Fabian; Mimura, Hidenori; Raevschi, Simion; Adelung, Rainer; Pugno, Nicola M.; Tighineanu, IonWe report on self-propelled rotating liquid marbles fabricated using droplets of alcoholic solution encapsulated in hollow microtetrapods of GaN with hydrophilic free ends of their arms and hydrophobic lateral walls. Apart from stationary rotation, elongated-spheroid-like liquid marbles were found, for the first time, to exhibit pulsed rotation on water surfaces characterized by a threshold speed of rotation, which increased with the weight of the liquid marble while the frequency of pulses proved to decrease. To throw light upon the unusual behavior of the developed self-propelled liquid marbles, we propose a model which takes into account skimming of the liquid marbles over the water surface similar to that inherent to flying water lily beetle and the so-called helicopter effect, causing a liquid marble to rise above the level of the water surface when rotating.Item SYNTHESIS AND PROPERTIES OF β-Ga2O3 NANOWIRES AND NANOSHEETS ON DOPED GaS:Mn SUBSTRATES(2024) Sprincean, Veaceslav; Haoyi, Qiu; Lupan, Oleg; Tjardts, Tim; Petersen, Deik; Veziroglu, Salih; Adelung, Rainer; Caraman, MihailIn this work, the synthesis, morphology, optical and luminescence properties of Mn-doped β-Ga2O3 (Ga2O3:Mn) nanowires/nanosheets on Mn-doped GaS (GaS:Mn) substrate are studied. The aim was to obtain structures of semiconductors with layers of nanoformations (nanowires, nanosheets) from a wide energy band semiconductor such as β-Ga2O3 and to determine their characteristic properties. For the base material, Mn-doped GaS lamellae were chosen, which are optically transparent in the spectral region where the optical properties of Mn2+ and Mn3+ ions are manifested. Through thermal annealing, single-crystalline β-GaS plates doped with 1.3 atomic percent (at.%) of manganese (Mn) are exposed to an atmosphere enriched with H2O vapor at a temperature of 800 ◦C for 6 h. As a result, the surface of these plates is covered with a composite layer consisting of crystallites of α-Ga2S3:Mn and β-GaS:Mn planar junctions. This composite exhibits a direct band gap of 2.88 eV and an indirect band gap of 2.55 eV corresponding to the β-GaS:Mn crystallites. Upon further increasing the temperature during thermal annealing to 850 ◦ C and 920 ◦C, the surface of the β-GaS:Mn samples transform into a layer of β-Ga2O3: Mn nanowires/nanosheets with a band gap of 4.5 eV. Its intense green-orange photoluminescence is caused by electronic transitions within the Mn2+ ion.Item TERAHERTZ SHIELDING PROPERTIES OF AERO-GaN(IOP Publishing Ltd, 2019) Braniste, Tudor; Dragoman, Mircea; Alyabyeva, Liudmila; Zhukov, Sergey; Ciobanu, Vladimir; Aldrigo, Martino; Raevschi, Simion; Dragoman, Daniela; Iordanescu, Sergiu; Shree, Sindu; Gorshunov, Boris; Adelung, Rainer; Tiginyanu, IonThe electrodynamic properties of the first aero-material based on compound semiconductor namely of Aero-GaN, in the terahertz frequency region are experimentally investigated. Spectra of complex dielectric permittivity, refractive index, surface impedance are measured at frequencies 4–100 cm−1 and in the temperature interval 4–300 K. The shielding properties are found based on experimental data. The aero-material shows excellent shielding effectiveness in the frequency range from 0.1 to 1.3 THz, exceeding 40 dB in a huge frequency bandwidth, which is of high interest for industrial applications. These results place the aero-GaN among the best THz shielding materials known today.